USN \square 18MAT11

First Semester B.E. Degree Examination, Dec.2018/Jan. 2019

Calculus and Linear Algebra

Time: 3 hrs.
Max. Marks: 100

Note: Answer any FIWE full questions, choosing
 ONE full question from each modulo.

Module-1

1 a. Show that the curves $r^{n}=a^{n} \cos n \theta$ and $r^{n}=b^{n} \sin n \theta$ are intersect orthogonally. (06 Marks)
b. Find the radius of curvature of the curve $y=a \log \sec \left(\frac{x}{a}\right)$ at any point (x, y). ($\mathbf{0 6}$ Marks)
c. Show that the evolute of the parabola $y^{2}=4 a x$ is $27 a y^{2}=4(x-2 a)^{3} \quad(08$ Marks)

OR

2 a. With usual notation, prove that $\tan \phi=\mathrm{r} \frac{\mathrm{d} \theta}{\mathrm{dr}}$
(06 Marks)
b. Find the pedal equation of the curve $r=a e^{\theta \cot \alpha}$
(06 Marks)
c. Find the radius of curvature for the curve $r=a(1+\cos \theta)$.
(08 Marks)

Module-2

3 a. Using Maclaurin's expansion. Brove that $\sqrt{1+\sin 2 x}=1+x-\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{24}$. (06 Marks)
b. Evaluate $\operatorname{lt}_{x \rightarrow 0}\left(\frac{a^{x}+b^{x}+e^{x}+d^{x}}{4}\right)^{\frac{1}{x}}$.
(07 Marks)
a. Find the dimensions of the rectangular box open at the top of maximum capacity whose surface is 432 scr.cm.
(07 Marks)

4 a. If $u=f(y-z, z-x, x-y)$, show that $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}+\frac{\partial u}{\partial z}=0 . \quad$ (06 Marks)
b. If $u=x^{2}+y^{2}+z^{z}, v=x y+y z+z x, \quad w=x+y+z$. Find Jacobian $J=\frac{\partial(u, v, w)}{\partial(x, y, z)} .(07$ Marks)
c. Find the mininmum value of $x^{2}+y^{2}+z^{2}$ subject to the condition $x+y+z=3 a$. (07 Marks)

Module-3

5 a. Evaluate $\int_{0}^{\infty} \int_{0}^{\infty} \mathrm{e}^{-\left(x^{2}+y^{2}\right)} \mathrm{dxdy}$, by changing into polar coordinates.
(06 Marks)
b. Find the volume of the tetrahedron bounded by the planes:
$x=0, y=0, z=0, \frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$.
(07 Marks)
c. Prove that $\beta(\mathrm{m}, \mathrm{n})=\frac{\Gamma(\mathrm{m}) \Gamma(\mathrm{n})}{\Gamma(\mathrm{m}+\mathrm{n})}$.
(07 Marks)

OR

6 a. Evaluate $\int_{0}^{1} \int_{x}^{\sqrt{x}} x y d y d x$ by change of order of integration.
(06 Marks)
b. Evaluate $\int_{-1}^{1} \int_{0}^{z} \int_{x-z}^{x+z}(x+y+z) d y d x d z$.
(07 Marks)
c. Prove that $\int_{0}^{\pi / 2} \sqrt{\sin \theta} \cdot d \theta \times \int_{0}^{\pi / 3} \frac{1}{\sqrt{\sin \theta}} \cdot d \theta=\pi$.
(07 Marks)

Module-4

7 a. A body in air at $25^{\circ} \mathrm{C}$ cools from $100^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$ in 1 minute, find the temperature of the body at the end of 3 minutes.
(06 Marks)
b. Solve $\frac{d y}{d x}+\frac{y \cos x+\sin y+y}{\sin x+x \cos y+x}=0$.
(07 Marks)
c. Solve $x y p^{2}-\left(x^{2}+y^{2}\right) p+x y=0$.
(07 Marks)

OR

8 a. Solve $\frac{d y}{d x}+y \tan x=y^{2} \sec x$.
(06 Marks)
b. Show that the family of parabolas $y^{2}=4 a(x+a)$ is self orthogonal.
(07 Marks)
c. Find the gereral solution of the equation $(p x-y)(p y+x)=0$ by reducing into Clairaut's from, taking the substitution $X=x^{2}, Y=y^{2}$.
(07 Marks)

Module-5

9 a. Find the rank of the matrix :

$$
A=\left[\begin{array}{rrrr}
1 & 2 & -2 & 3 \\
2 & 5 & -4 & 6 \\
-1 & -3 & 2 & -2 \\
2 & 4 & -1 & 6
\end{array}\right]
$$

(07 Marks)
b. Solve the system of equations :

$$
\begin{aligned}
12 x+y & +z=31 \\
2 x+8 y-z & =24 \\
3 x+4 y & +10 z=58
\end{aligned}
$$

By Gauss - Siedal method.
(07 Marks)
c. Diagonalize the matrix :
$A=\left[\begin{array}{ll}-1 & 3 \\ -2 & \lambda\end{array}\right]$.
(06 Marks)

10 a. For what values of λ and M the system of equations:

$$
\begin{aligned}
x+2 y+3 z & =6 \\
x+3 y+5 z & =9 \\
2 x+5 y+\lambda z & =\mathbb{N}
\end{aligned}
$$

has i) no sqlution ii) a unique solution iii) infinite mumber of solution. (07 Marks)
b. Find the largest eigen value and the corresponding eigen vector of :
$A=\left[\begin{array}{rrr}6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{array}\right]$
By Rayleigh's power method, use $\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]^{\mathrm{T}}$ as the initial eigen vector (carry out 6 iterations).
(07 Marks)
c. Solve the systiem of equations :

$$
\begin{gathered}
x+y+z=9 \\
2 x+y-z=0 \\
2 x+5 y+7 z=52
\end{gathered}
$$

By Gauss elimination method.
(06 Marks)

First Semester B.E. Degree Examination, Dec.2018/Jan. 2019

Engineering Physics

Time: 3 hrs.
Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.

2. Physical constants: Velocity of light, $c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$

Planck's constant, $h=6.63 \times 10^{-34} \mathrm{JS}$
Mass of electron, $m_{e}=9.1 \times 10^{-31} \mathrm{~kg}$
Charge of electron, $e=1.6 \times 10^{-19} \mathrm{C}$
Boltzmann constant $=1.38 \times 10^{-23} \mathrm{JK}^{-1}$
Avagadro number $=6.02 \times 10^{23} / \mathrm{mol}$.

Module-1

1 a. What are shock waves? Mention the characteristics and applications of shock waves.
(06 Marks)
b. What are damped oscillations? Give the theory of damped oscillations and hence discuss the case of critical damping.
(10 Marks)
c. A free particle is executing simple harmonic motion in a straight line with a period of 25 seconds; 5 seconds after it has crossed the equilibrium point, the velocity is found to be $0.7 \mathrm{~m} / \mathrm{s}$. Find the displacement at the end of 10 seconds and also amplitude of oscillations.
(04 Marks)

OR

2 a. Define SHM. Mention the characteristics of SHM. Give one example of SHM. (06 Marks)
b. With a neat diagram, explain the construction and working of Reddy's shock tube. Mention conservation of mass energy and momentum expressions.
(10 Marks)
c. A mass of 0.5 kg causes on extension of 0.03 m in a spring and the system is set for oscillations. Find i) The force constant for the spring ii) Angular frequency and iii) Time period of the resulting oscillation.
(04 Marks)

Module-2

3 a. State and explain Hooke's law. Define elastic and plastic limits.
(06 Marks)
b. Define Young's modulus of materials. Derive an expression for the Young's modulus of a beam using single cantilever method.
(10 Marks)
c. Calculate the torque required to twist a wire of length 1.5 m , radius $0.0425 \times 10^{-2} \mathrm{~m}$ through an angle of $(\pi / 45)$ radians, if the value of rigidity modulus of the material is $8.3 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2}$.
(04 Marks)

OR

4 a. What is Bending moment? Mention various types of beams and their engineering applications (any four).
(06 Marks)
b. What are the types of Elastic moduli? Derive a relation between Y, K and σ. ($\mathbf{1 0}$ Marks)
c. Calculate the Force required to produce an extension of 1 mm in steel wire of length 2 m and diameter 1 mm . $\left(\mathrm{Y}=2 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}\right)$
(04 Marks)

Module-3

5 a. What is Numerical Aperture? Derive an expression for the same.
(06 Marks)
b. State and explain Maxwell's equation for electromagnetic field. Starting from Maxwell's equations, deduce the wave equation for a plane wave in free space.
(10 Marks)
c. Determine constant C, such that $\vec{A}=(x+a y) \hat{a}_{x}+(y+b z) \hat{a}_{y}+(x+c z) \hat{a}_{z}$ is solenoidal. ...
(04 Marks)

6 a. Explain the types of fiber losses.
(06 Marks)
b. State and explain Gauss Divergence theorem. Mention the Stoke's theorem.
(10 Marks)
c. The refractive indices of core and clad are 1.50 and 1.48 respectively in an optical fiber. Find the numerical aperture and angle of acceptance.
(04 Marks)

Module-4

7 a. Setup one dimensional time independent Schrödinger wave equation.
(06 Marks)
b. Mention the three modes of vibration in CO_{2} molecule. With neat diagrams explain the construction and working of CO_{2} laser.
(10 Marks)
c. A pulsed laser emits photons of wavelength 780 nm with 20 mW average power/pulse. Calculate the number of photons contained in each pulse if the pulse duration is 10 ns .
(04 Marks)
OR
8 a. Prove that electron cannot exist inside the Nucleus of an atom.
(06 Marks)
b. Derive an expression for energy density in terms of Einstein's coefficients.
(10 Marks)
c. An electron is bound in a one dimensional potential well of width $1 \AA$, but infinite wall height. Find its energy values in the ground state and in the first two excited states.
(04 Marks)

Module-5

9 a. What are the assumptions of Quantum Free Electron Theory (QFET)? Explain the merits of QFET.
(06 Marks)
b. What is Hall Effect? Derive an expression for Hall voltage interms of Hall coefficient.
(10 Marks)
c. Find the temperature of which there is 1% probability that a state with an energy 0.5 eV above the Fermi energy is occupied.
(04 Marks)

OR

10 a. What is polarization? Explain yarious types of polarizations mechanisms.
(06 Marks)
b. What is Fermi Energy? Derive an expression for Fermi Energy at zero Kelvin for a metal.
(10 Marks)
c. The resistivity of intrinsic germanium at $27^{\circ} \mathrm{C}$ is equal to 0.47 ohm-m. Assuming the electron and hole mobilities as 0.38 and $0.18 \mathrm{~m}^{2} / \mathrm{V}$-Sec respectively. Calculate the intrinsic carrier density.
(04 Marks)

First Semester B.E. Degree Examination, Dec.2018/Jan. 2019 C Programming for Problem Solving

Time: 3 hrs .
Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Explain the basic structure of a C program with example.
(10 Marks)
b. Define a variable. Explain the rules for constructing variables in C language.
(04 Marks)
c. Write a C program to compute simple interest. Draw the flowchart for the same.
(06 Marks)

OR

2 a. Define data type. Explain primitive data types supported by C language with example.
(10 Marks)
b. List all the operators used in C language and evaluate following expression.
i) $\mathrm{x}=\mathrm{a}-\mathrm{b} / 3+\mathrm{c} * 2-1$ when $\mathrm{a}=9, \mathrm{~b}=12, \mathrm{c}=3$
ii) $10!=10 \| 5<4 \& \& 8$.
(04 Marks)
c. Describe the various type computers.
(06 Marks)

Module-2

3 a. Explain the formatted I/O functions of C language with syntax and example. (04 Marks)
b. Write a C program to implement commercial calculator using switch statement. (06 Marks)
c. Write the syntax of different branching statements and explain their working.
(10 Marks)

OR

4 a. Differentiate between while loop and do-while loop. Explain with syntax and example.
b. Write a program to find the sum of N natural numbers using for loop.
c. Write a C program to plot Pascal's triangle.
(08 Marks)

Module-3

5 a. Define array. Write the syntax for and with declaring and initializing 1D and 2D array with suitable example.
(10 Marks)
b. Write a C program to find the transpose of a give matrix.
(10 Marks)

OR

6 a. Define string. List out all string manipulation function. Explain any two with examples.
(10 Marks)
b. Write a C program for [consider integer data] :
i) Bubble sort
ii) Linear search.
(10 Marks)

Module-4

7 a. What is a function? Explain the different type of functions based on parameter.
b. Write a program to find the factorial of a given number using functions.
(10 Marks)
c. Write a program to find GCD and LCM of two numbers using concept of functions.
(06 Marks)

OR

8 a. Explain recursion and write a program to find $\mathrm{n}^{\text {th }}$ term of Fibonacci series.
(10 Marks)
b. Give the scope and lifetime of following :
i) External variable
ii) Static variable
iii) Automatic variable
iv) Static variable
iv) Register variable.
(10 Marks)

Module-5

9 a. What is a structure? Explain the syntax of structure declaration in C with example. (04 Marks)
b. Write note on: i) Arrays within structures ii) arrays of structures.
c. Implement structures to read, write and compute average marks and the students scoring above and below average marks for class of N students.
(12 Marks)

OR

10 a. What is a pointer? Show how pointer variable is declared and initialized.
(05 Marks)
b. Explain any two preprocessor directives in C.
c. Write a C program to find sum and mean of all elements is an array using pointer. ($\mathbf{1 0}$ Marks)

First Semester B.E. Degree Examination, Dec.2018/Jan. 2019 Basic Electrical Engineering
Time: 3 hrs.
Max. Marks: 100
Note: Answer FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. State and explain Kirchhoff's laws as applied to an electric circuit. .
(06 Marks)
b. Given the network shown in Fig. Q1 (b), determine I_{1}, E, I_{3} and I. If voltage across 9Ω resistor is 27 V .
(08 Marks)

Fig. Q1 (b)
c. Derive the equation for root-mean-square value of an alternating current in terms of maximum value.
(06 Marks)

OR

2 a. Define the (i) Frequency (ii) Form factor \& (iii) Peak factor of sinusoidally varying voltage.
(06 Marks)
b. The instantaneous values of two alternating voltages are represented respectively by $\mathrm{V}_{1}=60 \sin \theta$ volts and $\mathrm{V}_{2}=40 \sin \left(\theta-\frac{\pi}{3}\right)$ volts. Derive an expression for instantaneous value of: (i) the sum
(ii) the difference of these voltages.
(08 Marks)
c. For the network shown in Fig. Q2, calculate the power consumed by each resistor. (06 Marks)

Fig. Q2

Module-2

3 a. Show that voltage and current in pure resistive circuit are in phase and power consumed in the circuit is equal to product of rms voltage and current. The circuit is excited by the a.c. source.
(06 Marks)
b. A resistance of 7Ω is connected in series with a pure inductance of 31.8 mH and the circuit is connected to a $100 \mathrm{~V}, 50 \mathrm{~Hz}$, sinusoidal supply. Calculate
(i) Circuit current (ii) Phase angle (iii) Power factor
(iv) Power.
(08 Marks)
c. Two wattmeters are used to measure power in a 3-phase balanced load. The wattmeter readings are 8.2 kW and 7.5 kW . Calculate (i) Total power (ii) Power factor and (iii) Total reactive power.
(06 Marks)

OR

4 a. Deduce the relationship between the phase and the line voltages of a three phase star connected system.
(06 Marks)
b. Three coils are connected in delta to a three phase, three wire, $400 \mathrm{~V}, 50 \mathrm{~Hz}$ supply and take a line current of 5 A at 0.8 p.f. lagging. Calculate the resistance and inductance of the coils.
(06 Marks)
c. A coil having a resistance of 20Ω and inductance of 0.0382 H , is connected in parallel with a circuit consisting of a $150 \mu \mathrm{~F}$ capacitor in series with 10Ω resistor. The arrangement is connected to a $230 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. Determine current in each branch. Also find total supply current.
(08 Marks)

Module-3

5 a. Explain the construction of a single phase transformer.
(06 Marks)
b. A 50 KVA single phase transformer has primary and secondary turns of 300 and 20 respectively. The primary winding is connected to a $2200 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. Calculate (i) No load secondary voltage (ii) approximate values of the primary and secondary currents on full load (iii) Maximum value of flux density.
(06 Marks)
c. With neat diagram, explain plate earthing.

OR

6 a. Derive E.M.F equation of single phase transformer.
b. With neat circuit and truth table, explain three way control of lamp. (06 Marks)
c. A 400 KVA transformer has a core loss of 2 kW and maximum efficiency at 0.8 p.f. occurs when the load is 240 kW . Calculate (i) The maximum efficiency at unity power factor. (ii) the efficiency on full load at 0.71 power factor.
(08 Marks)

Module-4

7 a. Draw a labeled diagram of the cross section of a d.c. generator. What are the essential functions of the field coils, armature, commutator and brushes?
(08 Marks)
b. A four-pole armature of d.c. generator has 624 lap-connected conductors and is driven at 1200 rpm . Calculate the useful flux per pole required to generate an E.M.F of 250 V .
(06 Marks)
c. A four pole motor is fed at 440 V and takes an armature current of 50 A . The resistance of the armature circuit is 0.28 ohm . The armature winding is wave-connected with 888 conductors and useful flux per pole is 0.023 wb. Calculate back emf and speed. (06 Marks)

OR

8 a. Obtain from first principles an expression for torque developed in d.c. motor.
(06 Marks)
b. Explain characteristics of d.c. shunt motor.
(06 Marks)
c. A shunt generator running at 500 rpm delivers 50 kW at 200 V . The armature and field resistances are 0.02 and 40Ω respectively. Calculate generated E.M.F if brush drop of 1 V per brush.
(08 Marks)

Module-5

9 a. By means of a diagram, describe the main parts of synchronous generator with their functions.
(08 Marks)
b. The stator of a 3-phase, 8 pole, 750 rpm alternator has 72 slots, each of which contains 10 conductors. Calculate the rms value of the emf per phase if flux per pole is 0.1 wb sinusoidally distributed. Assume full pitch coils and winding distribution factor of 0.96.
c. A 4-pole, $3300 \mathrm{~V}, 50 \mathrm{~Hz}$ induction motor runs at rated frequency and voltage. The frequency of the rotor currents is 2.5 Hz . Find slip and running speed.
(06 Marks)

OR

10 a. Deduce an expression for the frequency of rotor current in an induction motor. (06 Marks)
b. A 4-pole, 3-phase induction motor operates from a supply whose frequency is 50 Hz . Calculate,
(i) Synchronous speed.
(ii) The speed of the rotor when the slip is 0.04 .
(iii) The frequency of the rotor current when the slip is 0.03 .
(iv) The frequency of the rotor current at standstill.
c. Derive e.m.f equation for synchronous generator.

First Semester B.E. Degree Examination, Dec.2018/Jan. 2019 Elements of Civil Engineering and Mechanics

Time: 3 hrs.
Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Briefly explain the scopes of branches:
i) Transportation Engineering
ii) Geotechnical Engineering.
(10 Marks)
b. What are the effects of infrastructural facilities on socio-economic development of a country?
(05 Marks)
c. What is the role of a civil engineer in infrastructural development of a country?
(05 Marks)
OR
2 a. Explain briefly,
i) Law of physical independency of forces.
ii) Law of superposition of forces.
(06 Marks)
b. State and prove Varignon's law of moments.
c. Find the moment of 100 kN force acting on a rigid body ABC as shown in Fig.Q.2(c), about point A.
(08 Marks)

Fig.Q.2(c)

Module-2

3 a. Define Free Body Diagram, with the help of at least two examples. What is the importance of drawing a F.B.D (Free Body Diagram) in Engineering Mechanics?
(05 Marks)
b. What are the laws of dry friction?
(05 Marks)
c. A mass of 580 kg resting on a rough inclined plane is acted upon by a 6000 N force as shown in Fig.Q.3(c). If the coefficient of friction is 0.25 at point of contact, check whether the body slides up or down.
(10 Marks)

4 a. State and prove Lami's theorem.
b. Find the reactions developed at contact points A, B and C supporting two identical rollers each of weight 1000 N as shown in Fig.Q.4(b)

Fig.Q.4(b)
c. A ladder 4 m long and weighing 200 N is placed against a vertical wall and rests on a horizontal floor making an angle 60° with the floor. The coefficient of friction between ladder and floor is 0.3 and that between ladder and wall is 0.2 . The ladder in addition to its own weight supports a person weighing 600 N at a distance of 3 m from the floor along the ladder. Calculate the minimum force ' P ' to be applied horizontally at the floor level on the ladder to keep it in equilibrium.
(10 Marks)

Module-3

5 a. Determine the support reactions in case of a simply supported beam shown in Fig.Q.5(a).
(06 Marks)

b. Analyze the truss shown in Fig.Q5(b) to find member forces in member BC, CH and GH by method of sections.
(14 Marks)

Fig.Q5(b)
OR
6 a. Differentiate statically determinate and indeterminate structures with examples for each.
b. Determine member forces in the truss shown in Fig.Q.6(b).
(06 Marks)
(14 Marks)

Fig.Q.6(b)

7 a. Derive the expression for centroid of a semi-circle from first principle.
(06 Marks)
b. Determine the centroid of shaded area of composite shown in Fig.Q.7(b) with respect to origin ' O '.
(14 Marks)

Fig.Q.7(b)

OR

(06 Marks)
8 a. State and prove Parallel axis theorem.
b. Find radius of gyration of plane lamina about its horizontal centroidal axis shown in
Fig.Q.8(b).

Fig.Q.8(b)

Module-5

9 a. Two cars P and Q accelerates from a standing start. The acceleration of P is $1.3 \mathrm{~m} / \mathrm{s}^{2}$ and that of Q is $1.6 \mathrm{~m} / \mathrm{s}^{2}$. If Q was originally 6 m behind P , how long it takes to overtake P ? (10 Marks)
b. A stone ' A ' is dropped from top of a tower 50 m heigh. At the same time another stone ' B ' is thrown up from the foot of the tower with the velocity of $25 \mathrm{~m} / \mathrm{s}$. At what distance from top and after how much time the two stones will cross each other.
(10 Marks)

OR

10 a. State D' Alembert's principle and write significance of it structural dynamics. (06 Marks)
b. A cricket ball is thrown by a fielder in the ground from a height of 3 m at an angle of 40° with the horizontal. The velocity with which the ball is thrown is $30 \mathrm{~m} / \mathrm{s}$. The ball hits the wicket at a height of 0.3 m from ground. Determine the distance of the fielder from the wicket when the ball is thrown.
(14 Marks)

First Semester B.E. Degree Examination, Dec.2018/Jan. 2019 Basic Electronics

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Explain the working of PN junction diode under forward and reverse biased conditions.
b. Explain how zener diode helps in voltage regulation with neat circuit diagram.
(06 Marks)
c. Explain with neat circuit diagram and waveforms the working of center-tap full wave rectifier. Show that efficiency of full-wave rectifier is 81%.
(08 Marks)

OR

2 a. Explain the operation of half-wave rectifier with capacitor filter with neat circuit diagram and waveforms.
(06 Marks)
b. Show that the ripple factor of a half-wave rectifier is 1.21 and efficiency is 40.5%.
c. Explain VI characteristics of photodiode and its operation. $\quad \begin{aligned} & \text { (} 06 \text { Marks) } \\ & \text { d. } 04 \text { Marks) } \\ & \text { d. For the circuit shown in Fig.Q2(d) find (i) current and voltages in the circuit for } R_{L}=450 \Omega .\end{aligned} l$

(04 Marks)

Module-2

3 a. Explain the drain and transfer characteristics of a JFET with neat circuit diagram. (08 Marks)
b. Explain the basic structure and operation of JFET with neat diagrams.
(08 Marks)
c. For a JFET $I_{D S S}=9 \mathrm{~mA}$ and $\mathrm{V}_{\mathrm{GS}(\mathrm{off})}=-8 \mathrm{~V}_{(\max)}$ determine drain current for $\mathrm{V}_{\mathrm{GS}}=-4 \mathrm{~V}$.
(04 Marks)

OR

4 a. Explain the operation of an enhancement MOSFET with neat circuit diagram. (06 Marks)
b. Explain CMOS as an inverter with neat circuit diagram. Give its equivalent circuit and its advantages.
(08 Marks)
c. Explain VI characteristics of SCR.
(06 Marks)

Module-3

5 a. Explain the block diagram of an operational amplifier.
(06 Marks)
b. Explain the operation of an op-amp as a non-inverting amplifier with neat diagram and waveforms.
(06 Marks)
c. Define the following terms with respect to op-amp.
(i) CMRR
(ii) Slewrate
(iii) $\mu \mathrm{p}$ offset voltage and current
(iv) $\mu \mathrm{p}$ bias current
(08 Marks)

OR

6 a. Explain op-amp as a subtractor with neat circuit diagram.
(08 Marks)
b. Explain the different μ p modes of an op-amp.
c. For an op-amp circuit shown in Fig.Q6(c), find the output VO_{1} and VO_{2}.

Fig.Q6(c)
Also write the function of each op-amp used.
(06 Marks)

Module-4

7 a. With neat circuit diagram explain how transistor is used as an voltage amplifier. Derive an equation for A_{v}.
b. Explain the voltage series feedback circuit and derive an equation for voltage gain A_{v} with feedback.
c. Explain RC phase-shift oscillator with circuit diagram and necessary equations. (08 Marks)

OR

8 a. With neat circuit diagram explain how transistor can be used to switch an LED ON/OFF and give the necessary equation.
(08 Marks)
b. The transistor in common emitter configuration is shown in Fig.Q8(b) with $R_{c}=10 \mathrm{k} \Omega$ and
$\beta_{D C}=200$ determine
(i) V_{CE} at $\mathrm{V}_{\text {in }}=0$
(ii) $\mathrm{I}_{\mathrm{B}(\text { min })}$ to saturate the collector current
(iii) $\mathrm{R}_{\mathrm{B}(\max)}$ when $\mathrm{V}_{\text {in }}=5 \mathrm{~V}$. $\mathrm{V}_{\mathrm{CE}(\text { sat })}$ can be neglected.
(04 Marks)

Fig.Q8(b)
c. Explain the operation of IC-555 as an Astable oscillator with neat circuit diagram and necessary equation.
(08 Marks)

Module-5

9 a. Design Full adder circuit and implement it using basic gates.
b. Explain the basic elements of communication system with block diagram.
(10 Marks)
(06 Marks)
c. Find
(i) $(1010111011110101)_{2}=(?)_{16}$
(ii) $(\text { FA876 })_{16}=(?)_{2}$
(04 Marks)

OR
(04 Marks)
10 a. State and prove De Morgan's theorems.
diagrams.
b. Explain the working of a 3-bit ripple counter with neat circuit diagram and timing diad
c. Explain the working of RS flip flop with truth table and diagram.
d. Subtract the following using 2 's complement:
(02 Marks)
(i) 11100-10011

First Semester B.E. Degree Examination, Dec.2018/Jan. 2019 Elements of Mechanical Engineering

Time: 3 hrs .
Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.
 2. Use of Thermodynamic data hand book is permitted.

Module-1

1 a. Explain briefly the principle of conversion of solar energy directly into electrical energy in a solar cell.
(10 Marks)
b. Write a note on wind energy and its conversion.
(10 Marks)

OR

2 a. Explain I - law of thermodynamics. List the similarities and dissimilarities between work and heat.
(10 Marks)
b. Define the following term in relation to steam:
(i) Dryness fraction x
(ii) Latent heat ht
(iii) Degree of super heat
(iv) Saturation temperature
(10 Marks)

Module-2

3 a. Differentiate between water tube boiler and fire tube boiler.
(04 Marks)
b. List the boiler mountings and accessories and also mention their uses.
(06 Marks)
c. With neat sketch explain the working of Babcock and Wilcox boiler.
(10 Marks)

OR

8 (10 Marks)
With a neat sketch explain the working of a Reciprocating pump, state the advantages and uses.
(10 Marks)

Module-3

5 a. Differentiate between Two-stroke and Four stroke engine.
(04 Marks)
b. Explain with neat sketch construction and working of 4 -stroke diesel engine with the help of theoretical $\mathrm{P}-\mathrm{V}$ diagram.
(10 Marks)
c. A four stroke single cylinder Diesel engine piston diameter 250 mm and stroke 400 mm . The mean effective pressure is 4 -bar and speed is 500 rpm . Diameter of the brake drum is 1000 mm . The effective brake load is 400 N. Find IP, BP and FP.
(06 Marks)

OR

6. What are the properties of good refrigerant?
(04 Marks)
(b. Explain with neat sketch working principle of vapour compression refrigeration.
(10 Marks)
c. Explain the following :
(i) Refrigeration effect
(ii) Ton of refrigeration
(iii) COP.

12 (06 Marks)

Module-4

7 a. Write a note on application of ferrous and non-ferrous alloys.
b. Define composite material. State the advantages and applications of composite material.
c. Differentiate between Soldering, Brazing and Welding.

OR

8 Differentiate between Open and Crossed belt drive.
Enumerate the advantages and disadvantages of gear drive over belt drive.
(06 Marks)
(c. Derive an equation for length of belt in open belt drive.

Module-5

9 a. Explain the following operation on lathe with suitable sketches:
(i) Turning
(ii) Knurling
(iii) Facing
(iv) Thread cutting
b. Explain the following operation on milling machine with suitable sketches:
(i) Form milling
(ii) Angular milling
(iii) Gang milling
(10 Marks)

OR

10 a. Differentiate between open loop and closed loop systems.
(b) Define robot. Write down industrial applications of robot.
(c) Explain the components of CNC with a block diagram.

18EGH18

Question Paper Version : D
First Semester B.E Degree Examination, Dec.2018/Jan. 2019 Technical English - I (COMMON TO ALL BRANCHES)
Time: 3 hrs.]
[Max. Marks: 100

INSTRUCTIONS TO THE CANDIDATES

1. Answer all the hundred questions, each question carries ONE mark.
2. Use only Black ball point pen for writing / darkening the circles.
3. For each question, after selecting your answer, darken the appropriate circle corresponding to the same question number on the OMR sheet.
4. Darkening two circles for the same question makes the answer invalid.
5. Damaging/overwriting, using whiteners on the OMR sheets are strictly prohibited.

Select the correct Prefix or Suffix from the given options to complete the gap: (Q.No. 1 to Q.No.6)

1. adjustment.
a) Mal
b) All
c) $n \circ n$
d) un
2. \qquad driven.
a) Wise
b) Self
c) Un
d) Re
3. \qquad chairman
a) Wise
b) Vice
c) Nice
d) Un
4. Affection \qquad
a) ate
b) eat
c) ade
d) es
5. Astro \qquad
a) $\log 0$
b) logist
c) loger
d) ist
6. Micro \qquad
b) phone
c) scene
d) ship
a) alia

Choose the appropriate Homophones of the following words: (Q.No. 7 to Q.No.11)
7. Ad: \qquad
a) Had
b) Add
c) Odd
d) and
8. Beet : \qquad
a) Beat
b) Boat
c) Bate
d) Bird
9. Scene : \qquad
a) Seen
b) Rain
c) See
d) Saw
10. Tea: \qquad
a) Seen
b) Tee
c) rite
d) sow
11. Right: \qquad
a) Bright
b) Light
c) Rite
d) effect

Choose the correct Antonym for the following words (Q.No. 12 to Q.No.16)
12. Interest: \qquad
a) uninterest
b) disinterest
c) non-interest
d) curious
13. Blunt: \qquad
a) dull
b) sharp
c) gloomy
d) wax
14. Hostile: \qquad
a) Innocent
b) Friendly
c) Lazy
d) Crazy
15. Fresh: \qquad
a) Stale
b) Stole
c) Steal
d) Steel
16. Postpone : \qquad
b) Before
c) Advance
d) Soon
a) Prepone

Choose the correct synonym for the following words (Q.No. 17 to Q.No.21)
17. Amuse : \qquad

a) Entertain
b) Enroll
c) engage
d) ended
18. Tranquil : \qquad
a) calm
b) storm
c) bold
d) loud
19. Darling : \qquad
a) near
b) dear
c) close
d) full
20. Event
a) Vain
b) Void
c) incident
d) vile
21. Queer: \qquad
a) curious
b) gain
c) deep
d) weary

Select the appropriate Question Tag, to complete the following sentences: (Q.No. 22 to Q.No.25)
22. You are not serious;
a) are you?
b) had you?
c) were you?
d) aren't you?
23. We can't buy this costly car, \qquad
a) can't we?
b) can we?
c) could we?
d) shouldn't we?
24. Give me a hint, \qquad
a) will you?
b) won't you?
c) can you?
d) Do you?
25. There are many beautiful lakes in Udaipur, \qquad
a) are there?
b) weren't there?
c) aren't there?
d) isn't there?
26. A spendthrift is devoid \qquad foresight and often runs \qquad debt
a) in, in
b) of, in
c) of, into
d) of, to
27. Have you read the last \qquad one poem of the book?
a) before
b) but
c) either
d) because
28. He is wise \qquad he is young
a) though
b) where
c) before
d) because
29. You are \qquad my friend \qquad philosopher
a) both, and
b) and, both
c) and, and
d) both, both
30. \qquad How unworthy of you!
a) pooh!
b) Hush!
c) Fie!
d) ouch!
31. Much \qquad since they were last seen here
a) has happened
b) had happened
c) was happening
d) would have happening
32. He \qquad waiting for her since morning.
a) has been
b) have been
c) had
d) would
33. I suggest that Prakash \qquad walk on and try to get help.
a) would
b) can
c) could
d) should
34. Some checks \qquad to be put on the mushrooming of frivolous unions.
a) also have
b) has
c) will also
d) shall also
35. He would not have written this letter if he \qquad heard the news.
a) had not
b) would have
c) will have
d) shall had
36. The police \qquad arrested the thief
a) has
b) have
c) has been
d) will
37. The horse and carriage \qquad ready
a) is
b) are
c) were
d) have
38. My brother likes comics \qquad much
a) Very
b) Too
c) most
d) so
39. \qquad boys passed with distinction
a) full
b) little
c) a few
d) number
40. It is \qquad hot to drink
a) very
b) so much
c) Too
d) more
41. I complimented him \qquad his brilliant success in the examination
a) over
b) for
c) to
d) on
42. As I approached \qquad him, he turned and walked away
a) to
b) by
c) beside
d) no preposition is needed
43. \qquad uranium, we can use another metal, thorium to produce nuclear power
a) Beside
b) Besides
c) Against
d) $o f$
44. \qquad all your patent medicines, you haven't cured me \qquad this cold
a) of, of
b) of, from
c) with, of
d) with, from
45. If you live \qquad your means, you will, run \qquad debt.
a) above, in
b) beyond, into
c) beyond, in
d) in, on
46. \qquad do you think has stolen the watch?
a) Who
b) Whom
c) Whose
d) All of these
47. \qquad do you think I met at the party?
a) Who
b) Whom
c) Whose
d) None of these
48. This dress is \qquad to that.
a) Preferable
b) More preferable
c) Most preferable
d) None of these
49. Our teacher has read \qquad book of this library.
a) each
b) every
c) little
d) small
50. The plural form of the compound noun 'Son-in-law' is
a) Son-in-laws
b) Sons-in-law
c) Sons-in-laws
d) Son-in-law
51. Which of the following Nouns is generally used as plural form?
a) Economics
b) Furniture's
c) Public
d) News
52. The meaning of the Noun 'Advices' is
a) Counsel
b) Opinion
c) Information
d) Advise
53. You and Ahmed have wasted \qquad time
a) they
b) your
c) yours
d) him
54. The Abstract noun of the verb 'Go' is
a) Goit
b) Glutton
c) Gone
d) Go

Choose the correct parts of speech of the underlined words: (Q.No. 55 to Q.No.60)

55. "Our blessings come from above"
a) Noun
b) Pronoun
c) Verb
d) Adverb
56. "The stars are shining above in the sky"
a) Noun
b) Pronoun
c) Adverb
d) Adjective
57. "None but the brave deserve the best"
a) Preposition
b) Noun
c) Conjunction
d) Verb
58. "She tried hard but did not succeed".
a) Noun
b) Conjunction
c) Adverb
d) Preposition
59. Ask either of them to leave
a) Verb
b) Adverb
c) Pronoun
d) Adjective
60. I believe in human 'goodness'.
a) Abstract Noun
b) Proper Noun
c) Common Noun
d) Collective Noun
61. Which of these is a communication skill?
a) Swimming
b) Running
c) Sleeping
d) Asking Questions
62. Which of these is an intrapersonal communication barrier?
a) Lack of knowledge
b) Reading
c) Listening
d) Writing
63. Which of the following is called an Aspiration?
a) elongated pronunciation
b) actual sound
c) forceful release of air
d) sound
64. In business, oral communication is face-to-face
a) in some situation
b) in no situation
c) in all but one situation
d) in all situation
65. Which of the following skills has the largest share in communication time in schools/colleges?
a) Reading
b) Listening
c) Writing
d) Speaking
66. In general, the oral communication is the interchange of \qquad between the sender and the receiver.
a) cues and clues
b) written messages
c) signs and gestures
d) verbal messages
67. Comparatively, oral communication is better than written communication in
a) Providing opportunity to refer back
b) Conveying feelings and emotions
c) Saving time
d) Conveying facts and opinions
68. Which of the following is a Interpersonal Communication barrier?
a) Language
b) Listening
c) Reading
d) Writing
69. Body language is also known as
a) Noise
b) Overflow
c) Leakage
d) Verbal
70. Which of these is not a communication skill?
a) Swimming
b) Asking question
c) Writing
d) Body language
71. Which of the following has / a:/ sound
a) art
b) eat
c) date
d) get
72. Which of the following has /i:/ sound
a) Fact
b) eat
c) wit
d) few
73. Which of the following has $|\mathrm{P}|$ sound
a) but
b) pat
c) wit
d) get
74. Which of the following is an adjective form of "WORD"
a) vocal
b) verbal
c) oral
d) word
75. The adjective form of the noun "Attendance" is
a) Attend
b) Attentive
c) Attendant
d) Presence
76. The pronunciation of definite article "The", before a vowel is
a) thee
b) th-uh
c) th-hu
d) th-eh
77. The baker prepared some 'eats' for Christmas. Here the word 'eats' is
a) a noun
b) a pronoun
c) a verb
d) an adverb
78. They have reached the place \qquad time
a) on
b) in
c) at
d) over
79. The \qquad of an earthquake is the movement of tectonic platos
a) Reason
b) Cause
c) Habit
d) Wind
80. One who knows many languages is called
a) Linguist
b) Emigrant
c) Omnipotent
d) Fotalist
81. A person walking and not using a vehicle is called
a) Patriot
b) Pessimist
c) Pedestrain
d) Usurer
82. One who looks at the dark side of things
a) Pessimist
b) Optimist
c) Omniscient
d) Omnipotent

Select the name of the collective Noun of the following: (Q.No. 83 to Q.No.85)

83. A \qquad of ants
a) board
b) swarm
c) council
d) fleet
84. A \qquad of ships
a) fleet
b) posy
c) crew
d) bunch
85. A \qquad of Elephants
a) Stack
b) Herd
c) mob
d) gang

Choose the correct pair of words from the given options (Q.No.86 to Q.No.90)
86. Accept: \qquad
a) Expect
b) Except
c) Eccept
d) Excess
87. Fain: \qquad
a) Fine
b) Fane
c) Feign
d) Fan
88. Naughty: \qquad
a) knotty
b) notty
c) note
d) notice
89. Dissent: \qquad
a) Decent
b) Descent
c) Dissect
d) Decence
90. In: \qquad
a) Hen
b) Inn
c) Him
d) Hymn

Choose the correct spelling words which are commonly mis-spelt : (Q.No. 91 to Q.No.95)
91.
a) Advisable
b) Adviesable
c) Advisible
d) Adviseable
92.
a) Admission
b) Addmission
c) Admision
d) Admissione
93.
a) Adress
b) Address,
c) Adres
d) Addres
94.
a) appiarance
b) appearence
c) apparance
d) appearance
95.
a) Committment
b) Comittment
c) Commitment
d) Commitmment

Select the missing silent letter/s from the options given. Check the spelling carefully (Q.No. 96 to Q.No.100)
96. \qquad onest
a) h
b) b
c) k
d) c
97. Com \qquad
a) d
b) f
c) e
d) b
98. As \qquad ma
a) t
b) th
c) ss
d) kn
99. Fau \qquad -
a) t
b) gh
c) x
d) z
100. \qquad neumonia
a) p
b) ch
c) gh
d) k

